Monday, September 10, 2012

Test jig hardware

It's been a busy weekend, so I'm splitting this update into several posts.

The test jig firmware does nothing unless there is a way for the signals to reach the i4004 board under test. Here's a picture of the unmodified Digilent prototyping board for the Spartan-3E Starter board I'm using:

There are a couple of problems with this board as I need to use it. First are the pre-installed sockets to the left and above-left of the prototyping area. These sockets are intended to be used with a solderless breadboard glued over the prototyping area. If you intend to solder parts to the board (or wire-wrap them, which is the "official" use for this board variant) the sockets block access to the breakouts of the expansion connector on the far left. So those had to go.

I thought it might be handy to have quick access to the CLKIN, CLKOUT, and CLKIO circuits, which I'm using to carry the CLK1, CLK2, and 50 MHz system clock outputs. My logic analyzer pod connects to the circuit being observed with fly-wires that have pin sockets on their ends, so it's handiest if these circuits have pin headers in them. The i4004 boards would block access to straight headers, so I used a right-angle header instead.

The next change is to add the connectors that will mate to the i4004 boards. These are a PC/104-type 64-pin (32x2) stack-through connector on the right, and a 40-pin (20x2) connector on the left. There are a several reasons for putting these connectors on opposite sides of the board. The first is that it provides some mechanical stability without the need of stand-offs. Secondly, I plan to use the smaller connector for the extra signals that have to pass from the Instruction Decoder to the Arithmetic and Logic Unit, and it looks like it'd be easier to route if they're away from the larger connector. Thirdly, and most importantly, it's easy to solder two rows of pins, but if the connector pins are long it's a royal pain to try to solder three or more rows, as the additional rows block access.

The last addition I've completed thus far is the TC4427A clock driver chip in the upper-middle of the board. Eventually it will be joined by series dropping resistors or MOSFETs for the other lines.

No comments:

Post a Comment